

Outline

Lecture 1 - Introduction C. Joram, L. Ropelewski **Lecture 2 - Tracking Detectors** L. Ropelewski, M. Moll Lecture 3 - Scintillation and Photodetection C. D'Ambrosio, T. Gys Lecture 4 – Calorimetry C. Joram Calorimetry - Basic principles Interaction of charged particles and photons Electromagnetic cascades Nuclear interactions Hadronic cascades Homogeneous calorimeters Sampling calorimeters

Lecture 5 - Particle ID, Detector Systems

C. Joram, C. D'Ambrosio

4. Calorimetry

Calorimetry = Energy measurement by total absorption, usually combined with spatial reconstruction.

- LHC beam: Total stored beam energy $E = 10^{14} \text{ protons} \times 14.10^{12} \text{ eV} \approx 1.10^{8} \text{ J}$
- Which mass of water M_{water} could one heat up (ΔT = 100 K) with this amount of energy (c_{water} = 4.18 J g⁻¹ K⁻¹) ?
 M_{water} = E / (cΔT) = 239 kg
- What is the effect of a 1 GeV particle in 1 liter water (at 20° C)? $\Delta T = E / (c \cdot M_{water}) = 3.8 \cdot 10^{-14} \text{ K }!$

There must be more sensitive methods than measuring ΔT !

Interaction of charged particles

4. Calorimetry

e

 $get X_o in cm$)

Energy loss by Bremsstrahlung

Radiation of real photons in the Coulomb field of the nuclei of the absorber medium

$$-\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} z^2 \left(\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mc^2}\right)^2 E \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{E}{m^2}$$

Effect plays a role only for e^{\pm} and ultra-relativistic μ (>1000 GeV)

For electrons:
$$-\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} r_e^2 E \ln \frac{183}{Z^{\frac{1}{3}}}$$
$$\begin{bmatrix} -\frac{dE}{dx} = \frac{E}{X_0} \\ X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{\frac{1}{3}}}} \\ \text{(divide by specific density to the spe$$

Unlike electrons, muons in multi-GeV range can traverse thick layers of dense matter. Find charged particles traversing the calorimeter ? \rightarrow most likely a muon \rightarrow Particle ID

In order to be detected, a photon has to create charged particles and / or transfer energy to charged particles

Photo-electric effect:

(

(already met in photocathodes of photodetectors)

 $\gamma + \text{atom} \rightarrow \text{atom}^+ + e^-$

Only possible in the close neighborhood of a third collision partner \rightarrow photo effect releases mainly electrons from the K-shell.

Cross section shows strong modulation if $E_{\gamma} \approx E_{shell}$

$$\sigma_{photo}^{K} = \left(\frac{32}{\varepsilon^{7}}\right)^{\frac{1}{2}} \alpha^{4} Z^{5} \sigma_{Th}^{e} \qquad \varepsilon = \frac{E_{\gamma}}{m_{e}c^{2}} \qquad \sigma_{Th}^{e} = \frac{8}{3}\pi r_{e}^{2} \quad \text{(Thomson)}$$

At high energies ($\varepsilon >>1$)

$$\sigma_{photo}^{K} = 4\pi r_{e}^{2} \alpha^{4} Z^{5} \frac{1}{\varepsilon} \qquad \sigma_{photo} \propto Z^{5}$$

Interaction of photons

4. Calorimetry

4/8

4/9

Simple qualitative model

- Consider only Bremsstrahlung and (symmetric) pair production.
- Assume: $X_0 \sim \lambda_{pair}$

$$N(t) = 2^t$$
 $E(t) / particle = E_0 \cdot 2^{-t}$

Process continues until $E(t) \le E_c$

$$N^{total} = \sum_{t=0}^{t_{max}} 2^{t} = 2^{(t_{max}+1)} - 1 \approx 2 \cdot 2^{t_{max}} = 2\frac{E_0}{E_c}$$
$$t_{max} = \frac{\ln E_0 / E_c}{\ln 2}$$

After $t = t_{max}$ the dominating processes are ionization, Compton effect and photo effect \rightarrow absorption of energy.

Electromagnetic cascades

4. Calorimetry

6 GeV/c e-

Longitudinal shower development

 t_9

Shower maximum at

$$t_{\rm max} = \ln \frac{E_0}{E_c} \frac{1}{\ln 2}$$

95% containment

$$_{5\%} \approx t_{\max} + 0.08Z + 9.6$$

Size of a calorimeter grows only logarithmically with E_0

Transverse shower development

95% of the shower cone is located in a cylinder with radius 2 R_M

Molière radius
$$R_M = \frac{21 \text{ MeV}}{E_c} X_0 \quad [g/cm^2]$$

Example: $E_0 = 100 \text{ GeV}$ in lead glass
 $E_c = 11.8 \text{ MeV} \rightarrow t_{max} \approx 13, t_{95\%} \approx 23$
 $X_0 \approx 2 \text{ cm}, R_M = 1.8 \cdot X_0 \approx 3.6 \text{ cm}$
C. D'Ambrosio, T. Gys, C. Joram, M. Moll and L. Ropelewski CERN – PH/DT2 Particle Detectors – Principles and Techniques 4/12

103

10² H

101

10⁰

10"

longitudinal energy deposition (a.u.)

100

 X_0

CERN Academic Training Programme 2004/2005

transverse containment 90% (R_M)

30.

(C. Fabjan, T. Ludlam, CERN-EP/82-37)

Nuclear Interactions

4. Calorimetry

The interaction of energetic hadrons (charged or neutral) with matter is determined by inelastic nuclear processes.

Excitation and finally break-up of nucleus → nucleus fragments + production of secondary particles.

For high energies (>1 GeV) the cross-sections depend only little on the energy and on the type of the incident particle (π , p, K...).

$$\sigma_{inel} \approx \sigma_0 A^{0.7} \quad \sigma_0 \approx 35 \ mb$$

In analogy to X₀ a hadronic absorption length can be defined

$$\lambda_a = \frac{A}{N_A \sigma_{inel}} \propto A^{\frac{1}{4}}$$
 because $\sigma_{inel} \approx \sigma_0 A^{0.7}$

similarly a hadronic interaction length

$$\lambda_I = \frac{A}{N_A \sigma_{total}} \quad \propto A^{\frac{1}{3}} \qquad \lambda_I < \lambda_a$$

Interaction of charged particles

4. Calorimetry

Material	Ζ	А	$\rho [g/cm^3]$	$X_0[g/cm^2]$	$\lambda_{\rm I} [{\rm g/cm}^2]$	
Hydrogen (gas)	1	1.01	0.0899 (g/l)	63	50.8	
Helium (gas)	2	4.00	0.1786 (g/l)	94	65.1	
Beryllium	4	9.01	1.848	65.19	75.2	
Carbon	6	12.01	2.265	43	86.3	
Nitrogen (gas)	7	14.01	1.25 (g/l)	38	87.8	
Oxygen (gas)	8	16.00	1.428 (g/l)	34	91.0	
Aluminium	13	26.98	2.7	24	106.4	
Silicon	14	28.09	2.33	22	106.0	
Iron	26	55.85	7.87	13.9	131.9	
Copper	29	63.55	8.96	12.9	134.9	
Tungsten	74	183.85	19.3	6.8	185.0	
Lead	82	207.19	11.35	6.4	194.0	
Uranium	92	238.03	18.95	6.0	199.0	

C. D'Ambrosio, T. Gys, <u>C. Joram</u>, M. Moll and L. Ropelewski

Interaction of neutrons

C. D'Ambrosio, T. Gys, C. Joram, M. Moll and L. Ropelewski

Neutrons have no charge, i.e. their interaction is based only on strong (and weak) nuclear force. To detect neutrons, we have to create charged particles. Possible neutron conversion and elastic reactions ...

CERN – PH/DT2

CERN Academic Training Programme 2004/2005

Interaction of neutrinos

Neutrinos interact only weakly \rightarrow tiny cross-sections. For their detection we need again first a charged particle. Possible detection reactions:

$$\begin{split} \nu_\ell + n &\rightarrow \ell^{\text{-}} + p \qquad \ell = e, \, \mu, \, \tau \\ \overline{\nu}_\ell + p &\rightarrow \ell^{\text{+}} + n \qquad \ell = e, \, \mu, \, \tau \end{split}$$

The cross-section for the reaction $v_e + n \rightarrow e^- + p$ is of the order of 10⁻⁴³ cm² (per nucleon, $E_v \approx$ few MeV).

Neutrino detection requires big and massive detectors (ktons - Mtons) and very high neutrino fluxes (e.g. 10^{20} v / yr).

In collider experiments fully hermetic detectors allow to detect neutrinos indirectly:

- sum up all visible energy and momentum.
- attribute missing energy and momentum to neutrino.

Hadronic cascades

4. Calorimetry

Ύμ

Various processes involved. Much more complex than electromagnetic cascades.

A hadronic shower contains two components:

hadronic

- charged hadrons $p, \pi^{\pm}, K^{\pm,}$
- nuclear fragmets
- breaking up of nuclei (binding energy)
- neutrons, neutrinos, soft γ's, muons

electromagnetic \downarrow neutral pions $\rightarrow 2\gamma$ \rightarrow electromagnetic cascades $n(\pi^0) \approx \ln E(GeV) - 4.6$

(Grupen)

example E = 100 GeV: $n(\pi^0) \approx 18$

• invisible energy \rightarrow large energy fluctuations \rightarrow limited energy resolution

The concept of compensation

A hadron calorimeter shows in general different efficiencies for the detection of the hadronic and electromagnetic components ε_h and ε_e .

$$R_h = \varepsilon_h E_h + \varepsilon_e E_e$$

 ε_h : hadron efficiency ε_e : electron efficiency

The fraction of the energy deposited hadronically depends on the energy (remember $n(\pi^0)$)

$$\frac{E_h}{E} = 1 - f_{\pi^0} = 1 - k \ln E \quad (GeV) \qquad k \approx 0.1$$

 \rightarrow Response of calorimeter to hadron shower becomes non-linear

CERN Academic Training Programme 2004/2005

4/20

How to achieve compensation?

increase ε_h : use Uranium absorber \rightarrow amplify neutron and soft γ component by fission + use hydrogeneous detector \rightarrow high neutron detection efficiency

decrease ε_e : combine high Z absorber with low Z detectors. Suppressed low energy γ detection ($\sigma_{photo} \propto Z^5$)

offline compensation : requires detailed fine segmented shower data \rightarrow event by event correction.

4. Calorimetry

Homogeneous calorimeters: Detector = absorber

- ⇒ good energy resolution
- ⇒ limited spatial resolution (particularly in longitudinal direction)
- ⇒ only used for electromagnetic calorimetry

	Scintillator	Density	X ₀	Light Yield	d τ_1 [ns] λ	₁ [nm]	Rad.	Co	omments
		[g/cm ³]	[cm]	γ/MeV			Dam.		
I wo main types:	NaL (T1)	2 (7	2.50	(rel. yield*	·)	15		1	duce contin
	Nal (11)	3.07	2.59	4×10 ⁺	230 4	15	≥10	ny fra	aroscopic,
	CsI (Tl)	4.51	1.86	5×10^{4}	1005 5	65	≥10	Sli	ghtly
1. Scintillators				(0.49)				hy	groscopic
	CSI pure	4.51	1.86	4×10^4	10 3	10	10^{3}	Sli	ghtly
				(0.04)	36 3	10		hy	groscopic
	BaF ₂	4.87	2.03	10^{4}	0.6 2	20	10 ⁵		
	DCO	5.10	1.1.2	(0.13)	620 3	10	1.0		
	BGO	7.13	1.13	8×10 ³	300 4	80	10		
	PbW0 ₄	8.28	0.89	≈100	440 broad	band	nd 10^4		ht yield $= f(T)$
2. Cherenkov devices 🔪 👘					530 broad	band			
				* Relative	e light yield: rel	l. to Nal	(TI) read	out wit	h PM (bialkali PC
	Material	Density	X ₀ [cm]	n	Light yield	λα	_{ut} [nm]	Rad.	Comments
In both cases the signal		[g/cm ³]			[p.e./GeV]			Dam.	
in both babbe the eight	SE 5	1.09	2.54	1.67	(rel. p.e.*)	25	0	[Gy]	
consists of photons.	I ead glass	4.08	2.34	1.07	600	35	0	10	
De e de uturie, rele eterre ultimitien	SF-6	5.20	1.69	1.81	(1.3×10) 900	35	0	10^{2}	
Readout via photomultiplier,	Lead glass	5.20	1.09	1.01	(2.3×10^{-4})	55	0	10	
-diode/triode APD HPD	PbF ₂	7.66	0.95	1.82	2000			10 ³	Not available
diode/thode, ALD, TH D					(5×10 ⁻⁴)				in quantity

Example ECAL - homogeneous

ш Ц 4. Calorimetry

M. Kocian et al. (CALOR 2002)

BABAR (SLAC)

6580 CsI(TI) crystals with Si-PD readout

CERN Academic Training Programme 2004/2005

Sampling calorimeters

Sampling fluctuations

a)

Pathlength fluctuations + Landau fluctuations

distribution of (low energy) e^{\pm}

2mm Pb

nm LAr

Path length

Shower

wide spread angular

 $d_{eff} = \frac{d}{\cos\theta}$

E (GeV)

° 30

20

10

σ (E) /E

In thin gas detector layers the deposited energy shows typical Landau tails

4. Calorimetry

Example ECAL - sampling

4. Calorimetry

Example of a sampling ECAL: DELPHI High Density Projection Chamber (HPC)

(HPC was placed behind massive RICH detector !)

C. D'Ambrosio, T. Gys, C. Joram, M. Moll and L. Ropelewski

Example ECAL - sampling

ATLAS electromagnetic Calorimeter

Accordion geometry absorbers immersed in Liquid Argon

- Liquid Argon (90K)
- + lead-steal absorbers (1-2 mm)
- + multilayer copper-polyimide readout boards
- → Ionization chamber. 1 GeV E-deposit → 5 x10⁶ e⁻
- Accordion geometry minimizes dead zones.
- Liquid Ar is intrinsically radiation hard.
- Readout board allows fine segmentation (azimuth, pseudo-rapidity and longitudinal) acc. to physics needs

Test beam results $\sigma(E)/E = 9.24\%/\sqrt{E} \oplus 0.23\%$

Spatial resolution ≈ 5 mm / \sqrt{E}

Example HCAL - sampling

CMS Hadron calorimeter

Brass absorber + plastic scintillators

- 2 x 18 wedges (barrel)
- + 2 x 18 wedges (endcap)
- ~ 1500 T absorber
- **5.8** λ_i at $\eta = 0$.

Scintillators fill slots and are read out via WLS fibres by HPDs (B = 4T!)

Test beam resolution for single hadrons

$$\frac{\sigma_E}{E} = \frac{65\%}{\sqrt{E}} \oplus 5\%$$